
Lecture 18

Hollow Waveguides

Hollow waveguides are useful for high-power microwaves. Air has a higher breakdown voltage
compared to most materials, and hence, it could be a good medium for propagating high
electromagnetic energy. Also, hollow metallic waveguides are sufficiently shielded from the
rest of the world so that interference from other sources is minimized. Furthermore, for radio
astronomy, they can provide a low-noise system immune to interference. Air generally has
less loss than materials, and loss is often the source of thermal noise. Therefore, a low loss
waveguide is also a low noise waveguide.1

18.1 General Information on Hollow Waveguides

Many waveguide problems can be solved in closed form. An example is the coaxial waveguide
previously discussed. In addition, there are many other waveguide problems that have closed
form solutions. Closed form solutions to Laplace and Helmholtz equations are obtained by the
separation of variables method. The separation of variables method works only for separable
coordinate systems. (There are 11 separable coordinates for Helmholtz equation, but 13 for
Laplace equation.) Some examples of separable coordinate systems are cartesian, cylindrical,
and spherical coordinates. But these three coordinates are about all we need to know for
solving many engineering problems. For other than these three coordinates, complex special
functions need to be defined for their solutions, which are hard to compute. Therefore, more
complicated cases are now handled with numerical methods using computers.

When a waveguide has a center conductor or two conductors like a coaxial cable, it can
support a TEM wave where both the electric field and the magnetic field are orthogonal to
the direction of propagation. The uniform plane wave is an example of a TEM wave, for
instance. However, when the waveguide is hollow or is filled completely with a homogeneous
medium, without a center conductor, it cannot support a TEM mode as we shall prove next.

1The fluctuation dissipation theorem [125, 126] says that when a system loses energy to the environment,
it also receives the same amount of energy from the environment for energy conservation. In a word, a lossy
system loses energy to its environment, but it also receives energy back from the environment in terms of
thermal noise. Thus, the lossier a system is, the more thermal noise is needed for energy balance.
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192 Electromagnetic Field Theory

Much of the materials of this lecture can be found in [33,85,100].

18.1.1 Absence of TEM Mode in a Hollow Waveguide

Figure 18.1: Absence of TEM mode in a hollow waveguide enclosed by a PEC wall.
The magnetic field lines form a closed loop inside the waveguide due to the absence of
magnetic charges.

We would like to prove by contradiction (reductio ad absurdum) that a hollow waveguide
as shown in Figure 18.1 (i.e. without a center conductor) cannot support a TEM mode as
follows. If we assume that TEM mode does exist, then the magnetic field has to end on itself
due to the absence of magnetic charges on the waveguide wall. In this case, it is clear that�
C

Hs · dl 6= 0 about any closed contour following the magnetic field lines. But Ampere’s law
states that the above is equal to

�
C

Hs · dl = jωε

�
S

E · dS +

�
S

J · dS (18.1.1)

The left-hand side of the above equation is clearly nonzero by the above argument. But for
a hollow waveguide, J = 0 and the above becomes

�
C

Hs · dl = jωε

�
S

E · dS (18.1.2)

Hence, this equation cannot be satisfied unless on the right-hand side there are Ez 6= 0
component. This implies that a TEM mode where both Ez and Hz are zero in a hollow
waveguide without a center conductor cannot exist.

By the above argument, in a hollow waveguide filled with homogeneous medium, only
TEz (TE to z) or TMz (TM to z) modes can exist like the case of a layered medium. For
a TEz wave (or TE wave), Ez = 0, Hz 6= 0 while for a TMz wave (or TM wave), Hz = 0,
Ez 6= 0. These classes of problems can be decomposed into two scalar problems like the layered
medium case, by using the pilot potential method. However, when the hollow waveguide is
filled with a center conductor, the TEM mode can exist in addition to TE and TM modes.
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We begin by studying some simple closed form solutions to hollow waveguides, such as
the rectangular waveguides. These closed form solutions offer physical insight into the prop-
agation of waves in a hollow waveguide. Another waveguide with slightly more complicated
closed form solutions is the circular hollow waveguide. The solutions need to be sought in
terms of Bessel functions. Another waveguide with very complicated closed form solutions
is the elliptical waveguide. However, the solutions are too complicated to be considered; the
preferred method of solving these complicated problems is via numerical methods these days.

18.1.2 TE Case (Ez = 0, Hz 6= 0, TEz case)

In this case, the field inside the waveguide is TE to z or TEz. To ensure such a TE field, we
can write the E field as

E(r) = ∇× ẑΨh(r) (18.1.3)

By construction, equation (18.1.3) will guarantee that Ez = 0. Here, Ψh(r) is a scalar
potential and ẑ is called the pilot vector.2 The subscript “h” is used because this scalar
potential can be related to the z component of the H field.

The waveguide is assumed source free and filled with a lossless, homogeneous material.
Eq. (18.1.3) also satisfies the source-free condition since, clearly, ∇ ·E = 0. And hence, from
Maxwell’s equations that

∇×E = −jωµH (18.1.4)

∇×H = jωεE (18.1.5)

it can be shown that

∇×∇×E− ω2µεE = 0 (18.1.6)

Furthermore, using the appropriate vector identiy, such as the back-of-the-cab formula, it
can be shown that the electric field E(r) satisfies the following Helmholtz wave equation (or
partial differential equation) that

(∇2 + β2)E(r) = 0 (18.1.7)

where β2 = ω2µε. Substituting (18.1.3) into (18.1.7), we get

(∇2 + β2)∇× ẑΨh(r) = 0 (18.1.8)

In the above, we can show that ∇2∇× ẑΨ = ∇× ẑ(∇2Ψ), or that these operators commute.3

Then it follows that

∇× ẑ(∇2 + β2)Ψh(r) = 0 (18.1.9)

2It “pilots” the field so that it is transverse to z.
3This is a mathematical parlance, and a commutator is defined to be [A,B] = AB−BA for two operators

A and B. If these two operators commute, then [A,B] = 0.
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Thus, if Ψh(r) satisfies the following Helmholtz wave equation or partial differential equa-
tion

(∇2 + β2)Ψh(r) = 0 (18.1.10)

then (18.1.9) is satisfied, and so is (18.1.7).4 Hence, the E field constructed with (18.1.3)
satisfies Maxwell’s equations, if Ψh(r) satisfies (18.1.10).

Figure 18.2: A hollow metallic waveguide with a center conductor (left), and without a
center conductor (right).

Next, we look at the boundary condition for Ψh(r) which is derivable from the boundary
condition for E. The boundary condition for E is that n̂×E = 0 on C, the PEC wall of the
waveguide. But from (18.1.3), using the back-of-the-cab (BOTC) formula,

n̂×E = n̂× (∇× ẑΨh) = −n̂ · ∇Ψh = 0 (18.1.11)

In applying the BOTC formula, one has to be mindful that ∇ operates on a function to its
right, and the function Ψh should be placed to the right of the ∇ operator.

In the above n̂ · ∇ = n̂ · ∇s where ∇s = x̂ ∂
∂x + ŷ ∂

∂y (a 2D gradient operator) since n̂ has

no z component. The boundary condition (18.1.11) then becomes

n̂ · ∇sΨh = ∂nΨh = 0, on C (18.1.12)

where C is the waveguide wall where ∂n is a shorthand notation for n̂ ·∇s operator which is a
scalar operator. The above is also known as the homogeneous Neumann boundary condition.

Furthermore, in a waveguide, just as in a transmission line case, we are looking for traveling
wave solutions of the form exp(∓jβzz) for (18.1.10), or that

Ψh(r) = Ψhs(rs)e
∓jβzz (18.1.13)

4(18.1.10) is a sufficient but not necessary condition.
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where rs = x̂x + ŷy, or in short, Ψhs(rs) = Ψhs(x, y) is a 2D function. Thus, ∂nΨh = 0
implies that ∂nΨhs = 0 since ∂n involves ∂x and ∂y, and only Ψhs(x, y) is a function of x and

y. With this assumption, ∂2

∂z2 → −βz
2, and (18.1.10) becomes even simpler, namely that,

(∇s2 + β2 − βz2)Ψhs(rs) = (∇s2 + β2
s )Ψhs(rs) = 0 , ∂nΨhs(rs) = 0, on C (18.1.14)

where ∇2
s = ∂2/∂x2 + ∂2/∂y2 and β2

s = β2 − β2
z . The above is a boundary value problem

(BVP) for a 2D waveguide problem. The above 2D wave equation is also called the reduced
wave equation.

18.1.3 TM Case (Ez 6= 0, Hz = 0, TMz Case)

Repeating similar treatment for TM waves, the TM magnetic field is then

H = ∇× ẑΨe(r) (18.1.15)

where

(∇2 + β2)Ψe(r) = 0 (18.1.16)

The subscript e is usded for the pilot potential because it can be related to the z component
of the E field. We need to derive the boundary condition for Ψe(r) from the fundamental
boundary condition that n̂ × E = 0 on the waveguide wall. To this end, we find the corre-
sponding E field by taking the curl of the magnetic field in (18.1.15), and thus the E field is
proportional to

E ∼ ∇×∇× ẑΨe(r) = ∇∇ · (ẑΨe)−∇2ẑΨe = ∇ ∂

∂z
Ψe + ẑβ2Ψe (18.1.17)

where we have used the BOTC formula to simplify the above. The tangential component of
the above is n̂×E which is proportional to

n̂×∇ ∂

∂z
Ψe + n̂× ẑβ2Ψe

In the above, n̂ × ∇ is a tangential derivative, and it is clear that the above will be zero if
Ψe = 0 on the waveguide wall. Therefore, if

Ψe(r) = 0 on C, (18.1.18)

where C is the waveguide wall, then,

n̂×E(r) = 0 on C (18.1.19)

Equation (18.1.18) is also called the homogeneous Dirichlet boundary condition.
Next, we assume that

Ψe(r) = Ψes(rs)e
∓jβzz (18.1.20)
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This will allow us to replace ∂2/∂z2 = −β2
z . Thus, with some manipulation, the boundary

value problem (BVP) related to equation (18.1.16) reduces to a simpler 2D problem, i.e.,

(∇s2 + β2
s )Ψes(rs) = 0 (18.1.21)

with the homogeneous Dirichlet boundary condition that

Ψes(rs) = 0, rs on C (18.1.22)

To illustrate the above theory, we can solve some simple waveguides problems.

18.2 Rectangular Waveguides

Rectangular waveguides are among the simplest waveguides to analyze because closed form
solutions exist in cartesian coordinates. One can imagine traveling waves in the xy directions
bouncing off the walls of the waveguide causing standing waves to exist inside the waveguide.
We have already seen this wave physics in a transmission line: when a transmission line is
terminated with a short, traveling waves in both directions are observed.

As shall be shown, it turns out that not all electromagnetic waves can be guided by
a hollow waveguide. Only when the wavelength is short enough, or the frequency is high
enough that an electromagnetic wave can be guided by a waveguide. When a waveguide
mode cannot propagate in a waveguide, that mode is known to be cut-off. The concept of
cut-off for hollow waveguide is quite different from that of a dielectric waveguide we have
studied previously.

18.2.1 TE Modes (Hz 6= 0, H Modes or TEz Modes)

For this mode, the scalar potential Ψhs(rs) satisfies

(∇s2 + βs
2)Ψhs(rs) = 0,

∂

∂n
Ψhs(rs) = 0 on C (18.2.1)

where βs
2 = β2 − βz2. A viable solution using separation of variables5 for Ψhs(x, y) is then

Ψhs(x, y) = A cos(βxx) cos(βyy) (18.2.2)

where βx
2 + β2

y = β2
s . One can see that the above is the representation of standing waves in

the xy directions. It is quite clear that Ψhs(x, y) satisfies the BVP (boundary value problem)
and boundary conditions defined by equation (18.2.1). Furthermore, cosine functions, rather
than sine functions are chosen with the hindsight that the above satisfies the homogenous
Neumann boundary condition at x = 0, and y = 0 surfaces.

5For those who are not familiar with this topic, please consult p. 385 of Kong [33].
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Figure 18.3: The schematic of a rectangular waveguide. By convention, the length of the
longer side is usually named a.

To further satisfy the boundary condition at x = a, and y = b surfaces, it is necessary
that the boundary condition for eq. (18.1.12) is satisfied or that

∂xΨhs(x, y)|x=a ∼ sin(βxa) cos(βyy) = 0, (18.2.3)

∂yΨhs(x, y)|y=b ∼ cos(βxx) sin(βyb) = 0, (18.2.4)

The above puts constraints on βx and βy, implying that βxa = mπ, βyb = nπ where m and
n are integers. Hence, (18.2.2) becomes

Ψhs(x, y) = A cos
(mπ
a
x
)

cos
(nπ
b
y
)

(18.2.5)

where

β2
x + β2

y =
(mπ
a

)2

+
(nπ
b

)2

= β2
s = β2 − βz2 (18.2.6)

Clearly, (18.2.5) satisfies the requisite homogeneous Neumann boundary condition at the
entire waveguide wall.

At this point, it is prudent to stop and ponder on what we have done. Equation (18.2.1)
is homomorphic to a matrix eigenvalue problem

A · xi = λixi (18.2.7)

where xi is the eigenvector and λi is the eigenvalue. Therefore, β2
s is actually an eigenvalue,

and Ψhs(rs) is an eigenfunction (or an eigenmode), which is analogous to an eigenvector. Here,
the eigenvalue β2

s is indexed by m,n, so is the eigenfunction in (18.2.5). The corresponding
eigenmode is also called the TEmn mode.

The above condition on β2
s expressed by (18.2.6) is also known as the guidance condition

for the modes in the waveguide. Furthermore, from (18.2.6),

βz =
√
β2 − β2

s =

√
β2 −

(mπ
a

)2

−
(nπ
b

)2

(18.2.8)
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And from (18.2.8), when the frequency is low enough, then

β2
s =

(mπ
a

)2

+
(nπ
b

)2

> β2 = ω2µε (18.2.9)

and βz becomes pure imaginary and the mode cannot propagate or becomes evanescent in
the z direction.6 For fixed m and n, the frequency at which the above happens is called the
cutoff frequency of the TEmn mode of the waveguide. It is given by

ωmn,c =
1
√
µε

√(mπ
a

)2

+
(nπ
b

)2

(18.2.10)

When ω < ωmn,c, or the wavelength is longer than a certain value, the TEmn mode is
evanescent and cannot propagate inside the waveguide. A corresponding cutoff wavelength is
then

λmn,c =
2

[
(
m
a

)2
+
(
n
b

)2
]1/2

(18.2.11)

So when λ > λmn,c, the mode cannot propagate inside the waveguide or it cannot “enter”
the waveguide.

Lowest Guided Mode in a Rectangular Waveguide

When m = n = 0, then Ψh(r) = Ψhs(x, y) exp(∓jβzz) is a function independent of x and y.
Then E(r) = ∇ × ẑΨh(r) = ∇s × ẑΨh(r) = 0. It turns out the only way for Hz 6= 0 is for
H(r) = ẑH0 which is a static field in the waveguide. This is not a very interesting mode, and
thus TE00 propagating mode is assumed not to exist and not useful. So the TEmn modes
cannot have both m = n = 0. As such, the TE10 mode, when a > b, is the mode with the
lowest cutoff frequency or longest cutoff wavelength. Only when the frequency is above this
cutoff frequency and the wavelength is shorter than this cutoff wavelength, can only the TE10

mode propagate.
For the TE10 mode, for the mode to propagate, from (18.2.11), it is needed that

λ < λ10,c = 2a (18.2.12)

The above has the nice physical meaning that the wavelength has to be smaller than 2a in
order for the mode to fit into the waveguide. As a mnemonic, we can think that photons have
“sizes”, corresponding to its wavelength. Only when its wavelength is small enough can the
photons go into (or be guided by) the waveguide. The TE10 mode, when a > b, is also the
mode with the lowest cutoff frequency or longest cutoff wavelength.

It is seen with the above analysis, when the wavelength is short enough, or frequency is
high enough, many modes can be guided. Each of these modes has a different group and
phase velocity. But for most applications, only a single guided mode is desirable. Hence,
the knowledge of the cutoff frequencies of the fundamental mode (the mode with the lowest
cutoff frequency) and the next higher mode is important. This allows one to pick a frequency
window within which only a single mode can propagate in the waveguide.

It is to be noted that when a mode is cutoff, the field is evanescent, and there is no real
power flow down the waveguide: Only reactive power is carried by such a mode.

6We have seen this happening in a plasma medium earlier and also in total internal reflection.


